Subgraph characterization of Red/Blue-Split Graph and König Egerváry Graphs

نویسندگان

  • Ephraim Korach
  • Thành Nguyen
  • Britta Peis
چکیده

Kőnig-Egerváry graphs (KEGs) are the graphs whose maximum size of a matching is equal to the minimum size of a vertex cover. We give an excluded subgraph characterization of KEGs. We show that KEGs are a special case of a more general class of graph: Red/Blue-split graphs, and give an excluded subgraph characterization of Red/Blue-split graphs. We show several consequences of this result including theorems of Deming-Sterboul, Lovász, and Földes-Hammer. A refined result of Schrijver on the integral solution of certain systems of linear inequalities is also given through the result on the weighted version of Red/Blue-split graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forbidden subgraphs and the König-Egerváry property

The matching number of a graph is the maximum size of a set of vertexdisjoint edges. The transversal number is the minimum number of vertices needed to meet every edge. A graph has the König-Egerváry property if its matching number equals its transversal number. Lovász proved a characterization of graphs having the König-Egerváry property by means of forbidden subgraphs within graphs with a per...

متن کامل

König Deletion Sets and Vertex Covers above the Matching Size

A graph is König-Egerváry if the size of a minimum vertex cover equals the size of a maximum matching in the graph. We show that the problem of deleting at most k vertices to make a given graph König-Egerváry is fixedparameter tractable with respect to k. This is proved using interesting structural theorems on matchings and vertex covers which could be useful in other contexts. We also show an ...

متن کامل

Triangle-free graphs with uniquely restricted maximum matchings and their corresponding greedoids

A matchingM is uniquely restricted in a graph G if its saturated vertices induce a subgraph which has a unique perfect matching, namely M itself [M.C. Golumbic, T. Hirst, M. Lewenstein, Uniquely restricted matchings, Algorithmica 31 (2001) 139–154]. G is a König–Egerváry graph provided (G)+ (G)= |V (G)| [R.W. Deming, Independence numbers of graphs—an extension of the König–Egerváry theorem, Dis...

متن کامل

A Characterization of König-Egerváry Graphs Using a Common Property of All Maximum Matchings

The independence number of a graph G, denoted by α(G), is the cardinality of an independent set of maximum size in G, while μ(G) is the size of a maximum matching in G, i.e., its matching number. G is a König–Egerváry graph if its order equals α(G)+μ(G). In this paper we give a new characterization of König–Egerváry graphs. We also deduce some properties of vertices belonging to all maximum ind...

متن کامل

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006